Mathematics
Дайсон Ф. . Статистическая теория энергетических уровней сложных систем. . 1963
Description: Москва Иностранная литература 1963г. 124 с. Мягкая издательская обложка., Обычный формат.
Ф.И. Перегудов , Ф.П. Тарасенко.. Введение в системный анализ.. Москва: Высшая школа. 1989 368s.
Description: Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ. Учебник для вузов. Главы: Возникновение и развитие системных представлений. Модели и моделирование. Системы. Модели систем. Искусственные и естественные системы. Информационные аспекты изучения систем. Роль измерений в создании моделей систем. Выбор (принятие решений). Декомпозиция и агрегирование - процедуры системного анализа. О неформализуемых этапах системного анализа.
Status: хорошее. владельческая подпись. формат увеличен.
Description of seller: тираж 15 тысяч.
Бергман С.. Интегральные операторы в теории линейных уравнений с частными производными.. 1964
Description: Серия: Библиотека сборника Математика. Перевод с английского Маркушевич Л.А.. Под редакцией Данилюка И.И.. М. Изд-во Мир. 1964г. 305с. Мягкий переплет, обычный формат.
Клетеник Д.В.. Сборник задач по аналитической геометрии.. 1972
Description: Редакция Физико-математической литературы. 1972г. 240 с.
Федорюк М.В.. Метод перевала. . 1977
Description: Главная редакция физико-математической литературы. М. Наука 1977г. 368 с. Палiтурка / переплет: твердый, увеличенный формат. В книге рассмотрены основные методы асимптотических оценок интегралов, содержащих большой параметр: метод Лапласа, метод стационарной базы, метод перевала, как в одномерном, так и в многомерных случаях.
Бронштейн И.Н., Семендяев К.А.. Справочник по математике для инженеров и учащихся втузов. 1986
Description: М. Наука 1986г. 544 с. Палiтурка / переплет: Твердый, Увеличенный формат
Бермант А.Ф.. Краткий курс математического анализа. . 1964
Description: Уч.для втузов.При ред.участии И.Г.Арамановича. М. Наука 1964г. 664 с. Твердый переплет, увеличенный формат. Учебное пособие излагает основные разделы математического анализа, приводит факультативный материал по тем разделам, которые во ВТУЗах излагаются в сокращенном объеме, содержит обширный список литературы по математическому анализу. Изложение сопровождается примерами и задачами
Владимиров В.С.. Уравнения математической физики. . 1971
Description: Издание 2-е. М. Наука 1971г. 509 с. Палiтурка / переплет: Твердый, Обычный формат.
Description of seller: разводы от воды в начале книги
Прохоров Ю.В., Розанов Ю.А.. Теория вероятностей. Основные понятия. Предельные теоремы.. 1967
Description: Прохоров Ю.В., Розанов Ю.А. Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы. М. Наука 1967г. 496 с. Палiтурка / переплет: твердый, обычный формат. Книга представляет собой обзор важнейших результатов, методов и направлений современной теории вероятностей. Основные понятия теории вероятностей, важнейшие теоретико-вероятностные модели, некоторые методы оптимального регулирования, линейная фильтрация, элементы теории передачи стационарных сообщений по каналам связи - вот далеко не полный перечень разделов, представляющих интерес для читателей, соприкасающихся с теорией вероятностей, но не являющихся специалистами в этой области. В книге есть и разделы, предназначенные читателям, работающим в теории вероятностей и смежных направлениях, сюда относятся основания теории, некоторые аспекты общей теории случайных процессов, предельные теоремы и др.
Маслов В.П.. Комплексный метод ВКБ в нелинейных уравнениях. . 1977
Description: М. Наука 1977г. 384 с. твердый переплет, обычный формат. В монографии развивается новый асимптотический метод получения квазиклассических решений многомерных нелинейных уравнений. В качестве примеров рассматриваются нелинейные уравнения квантовой механики, уравнения кристаллической решетки и др. Полученные решения локализованы в окрестности некоторых кривых или поверхностей. Конструкция таких решений опирается на изложенный в I части гамильтонов формализм механики узких пучков и известные солитонные решения соответствующих двумерных задач. Книга предназначена научным работникам в области математики и ее приложений, а также физикам и механикам.