Mathematics
Выгодский М. . Справочник по элементарной математике. . 1965
Description: Таблицы, арифметика, алгебра, геометрия, тригонометрия, функции и графики. Издание 16-е. М. Наука 1965г. 424 с. Палiтурка / переплет: Тканевый корешок, картонный, уменьшенный формат. Этот справочник имеет двоякое назначение. Во-первых, здесь можно навести `моментальную` справку: что такое тангенс, как вычислить процент, каковы формулы для корней квадратного уравнения и т. п. Все определения, правила, формулы и теоремы сопровождаются примерами. Всюду, где это требуется, указывается, в каких случаях и как надо применять то или иное правило, каких оплошностей следует опасаться и т. п. Во-вторых, этот справочник, по замыслу автора, мого бы служить общедоступным пособием для повторения элементарной математики и даже для первого ознакомления с ее практическими применениями
Ландис Е. М. . Уравнения второго порядка эллиптического и параболического типов. . 1971
Description: М. Наука. 1971г. 288 с. Палiтурка / переплет: Твердый, Обычный формат. Книга посвящена теории эллиптических и параболических уравнений 2-го порядка, главным образом, линейных. Значительное внимание уделено вопросам качественного поведения решений вблизи граничных точек и на бесконечности.
Г. Бонди. Относительность и здравый смысл.. Москва: Мир. 1967 162s.
Description: Бонди Г. Относительность и здравый смысл. Автор настоящей книги, профессор Лондонского университета Герман Бонди - один из крупнейших современных английских ученых. Он автор многих важных и сложных трудов по общей теории относительности и космологии, руководитель лондонской гравитационной группы. Он больше склонен к глубоким математическим исследованиям, и замечательно то, что ему так удалось это новое изложение специальной (частной) теории относительности Эйнштейна, построенное на базе остроумных `практических` примеров.
Status: хорошее
Description of seller: Перевод с английского и предисл. Н.Мицкевича.
Рыбкин Н. . Сборник задач по тригонометрии 8, 9 и 10 классов средней школы. . 1955
Description: С приложением задач по геометрии, требующих применения тригонометрии. Издание 20-е. М.: Учпедгиз 1955г. 100 с. Палiтурка / переплет: Твердый, обычный формат. Утвержден Министерством просвещения СССР.
Мышкис А. Д.. Лекции по высшей математике. . 1969
Description: Издание 3- е. М. Наука 1969г. 640 с. Палiтурка / переплет: Твердый, Слегка увеличенный формат. Содержание: Величина и функция. Аналитическая геометрия на плоскости. Предел. Непрерывность. Производные. Приближенное решение конечных уравнений. Интерполяция. Определители и системы линейных алгебраических уравнений. Векторы. Комплексные числа и функции. Функции нескольких переменных. Аналитическая геометрия в пространстве. Матрицы и их применение. Применение частных производных. Неопределенный, определенный интегралы. Дифференциальные уравнения. Кратные интегралы. Ряды. Элементы теории вероятностей. Современная вычислительная техника.
Трев Ж.. Лекции по линейным уравнениям в частных производных с постоянными коэффициентами.. 1965
Description: Библиотека сборника математика М. Изд-во Мир. 1965г. 296с. Мягкий переплет, обычный формат. Книга посвящена общей теории дифференциальных уравнений в частных производных с постоянными коэффициентами. Главное внимание уделяется локальным свойствам решений, построению и исследованию различных фундаментальных решений, а также разрешимости в целом. Дано обстоятельное введение в широкий круг современных исследований, в большой степени интересных не только для математиков. Изложение в основном доступно студентам средних курсов Физико-математических факультетов.
Бергман С.. Интегральные операторы в теории линейных уравнений с частными производными.. 1964
Description: Серия: Библиотека сборника Математика. Перевод с английского Маркушевич Л.А.. Под редакцией Данилюка И.И.. М. Изд-во Мир. 1964г. 305с. Мягкий переплет, обычный формат.
Бермант А.Ф.. Краткий курс математического анализа. . 1964
Description: Уч.для втузов.При ред.участии И.Г.Арамановича. М. Наука 1964г. 664 с. Твердый переплет, увеличенный формат. Учебное пособие излагает основные разделы математического анализа, приводит факультативный материал по тем разделам, которые во ВТУЗах излагаются в сокращенном объеме, содержит обширный список литературы по математическому анализу. Изложение сопровождается примерами и задачами
Маслов В.П.. Комплексный метод ВКБ в нелинейных уравнениях. . 1977
Description: М. Наука 1977г. 384 с. твердый переплет, обычный формат. В монографии развивается новый асимптотический метод получения квазиклассических решений многомерных нелинейных уравнений. В качестве примеров рассматриваются нелинейные уравнения квантовой механики, уравнения кристаллической решетки и др. Полученные решения локализованы в окрестности некоторых кривых или поверхностей. Конструкция таких решений опирается на изложенный в I части гамильтонов формализм механики узких пучков и известные солитонные решения соответствующих двумерных задач. Книга предназначена научным работникам в области математики и ее приложений, а также физикам и механикам.
Петровский И. Г.. Лекции об уравнениях с частными производными. . 1961
Description: М. Государственное издательство физико-математической литературы. 1961г. 400 с. Твердый переплет, обычный формат. Классификация уравнений. Гиперболические уравнения (Задача Коши в области неаналитических функций. Колебания ограниченных тел). Эллиптические уравнения. Параболические уравнения.